Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(3): 51, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424412

RESUMO

The term cosmetics refers to any substances or products intended for external application on the skin with the aim of protection and better appearance of the skin surface. The skin delivery system promotes the controlled and targeted delivery of active ingredients. The development of this system has been driven by challenges encountered with conventional cosmeceuticals, including low skin retention of active components, limited percutaneous penetration, poor water dispersion of insoluble active ingredients, and instability of effective components. The aim is to create cosmeceuticals that can effectively overcome these issues. This review focuses on various nanocarriers used in cosmeceuticals currently and their applications in skin care, hair care, oral care, and more. The importance of nanotechnology in the sphere of research and development is growing. It provides solutions to various problems faced by conventional technologies, methods, and product formulations thus taking hold of the cosmetic industry as well. Nowadays, consumers are investing in cosmetics only for better appearance thus problems like wrinkles, ageing, hair loss, and dandruff requires to be answered proficiently. Nanocarriers not only enhance the efficacy of cosmeceutical products, providing better and longer-lasting effects, but they also contribute to the improved aesthetic appearance of the products. This dual benefit not only enhances the final quality and efficacy of the product but also increases consumer satisfaction. Additionally, nanocarriers offer protection against UV rays, further adding to the overall benefits of the cosmeceutical product. Figure 1 represents various advantages of nanocarriers used in cosmeceuticals. Nanotechnology is also gaining importance due to their high penetration of actives in the deeper layers of skin. It can be said that nanotechnology is taking over all the drawbacks of the traditional products. Thus, nanocarriers discussed in this review are used in nanotechnology to deliver the active ingredient of the cosmeceutical product to the desired site.


Assuntos
Cosmecêuticos , Cosméticos , Humanos , Autocuidado , Pele , Absorção Cutânea
2.
AAPS PharmSciTech ; 25(1): 14, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191830

RESUMO

Vemurafenib (VMF) is a practically insoluble (< 0.1 µg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.


Assuntos
Cromatografia de Fase Reversa , Polissorbatos , Disponibilidade Biológica , Vemurafenib , Solubilidade
3.
J Chromatogr Sci ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674403

RESUMO

Many analytical methods are reported for simultaneous estimation of pharmaceutical dosages form. However, only a few are reproducible at an industrial scale. The proposed research aims to establish a technology transfer (TT) protocol between two laboratories (Lab-X, originator) with binary and (Lab-Y, receiver) with quaternary high-performance liquid chromatography (HPLC) system. Thus, utilizing reverse-phase HPLC (RP-HPLC), a robust, sensitive and repeatable analytical method has been developed, validated and TT between two laboratories for simultaneous estimation of Andrographolide (AG) and Paclitaxel (PTX). The method has been developed on a Phenomenex Luna C18 column (150 x 4.6, 5) sustained at 40°C and validated under the International Conference on Harmonisation (ICH) Q2 (R1) regulatory guideline and TT USP chapter 1224. The mobile phase consisted of MilliQ (pH = 3) and a combination of acetonitrile and methanol (1:1) in the ratio 50:50 with a flow rate of 0.45 mL/min, linear gradient elution in both labs. The AG and PTX were detected on the PDA detector at 224 and 227 nm wavelength with retention time of 4.5 ± 0.34 and 8.2 ± 0.02 min and limit of detection was found 0.028 ± 0.004 µg/mL, and 0.028 ± 0.0007 µg/mL, whereas limit of quantification as 0.086 ± 0.011 µg/mL and 0.088 ± 0.0014 µg/mL respectively in both labs. Throughout, this approach we have proved that proposed method is repeatable in both labs, and it can be used to quantify AG and PTX in developed pharmaceutical nano-formulations.

4.
Int J Pharm ; 643: 123209, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37422142

RESUMO

The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Animais , Camundongos , Feminino , Paclitaxel , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Distribuição Tecidual , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
5.
Neurochem Res ; 48(10): 2936-2968, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37278860

RESUMO

Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia
6.
Nanomedicine (Lond) ; 18(4): 343-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37140535

RESUMO

Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.


Assuntos
Paclitaxel , Vitamina E , Camundongos , Animais , Paclitaxel/farmacologia , Distribuição Tecidual , Vitamina E/farmacologia , Apoptose , Linhagem Celular Tumoral , Polietilenoglicóis/farmacologia
7.
Pharm Res ; 40(2): 551-566, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36670330

RESUMO

INTRODUCTION: COX-2 inhibition in pro-tumoral M2 polarization of Tumor-Associated Macrophages (TAMs) underscore the improved prognosis and response to cancer therapy. Thus, etoricoxib, a COX-2 inhibiting NSAID drug is highly effective against tumorigenesis, but its compromised solubility and associated hepatotoxicity, and cardiotoxicity limit its clinical translation. OBJECTIVE: In view of the consequences, the proposed study entails the development of a liposomal formulation for etoricoxib and evaluates its anticancer potential. METHODS AND RESULT: Etoricoxib loaded liposome was prepared by thin layer hydration method and characterized as a nearly monodisperse system with particle size (91.64 nm), zeta potential (-44.5 mV), drug loading (17.22%), and entrapment efficiency (94.76%). The developed formulation was administered subcutaneously into the orthotopic 4T1/Balb/c mice model. Its treatment significantly reduced tumor size and skewed M2 polarization of TAMs to a greater extent against free etoricoxib. Furthermore, Tumor tissues analyzed through immunoblotting study confirmed the reduction in Akt phosphorylation at Thr308 residue and pro-tumoral VEGF, MMP-9, and MMP-2 proteins; Moreover, histology studies and microCT analysis of bones revealed the enhanced anti-metastatic potential of etoricoxib delivered through developed formulation against free etoricoxib. CONCLUSION: As an epilogue, the developed formulation efficiently delivers poorly soluble etoricoxib, enhances its therapeutic potential as an anti-tumor and anti-metastatic agent, and directs explorative research for clinical translation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Lipossomos , Animais , Camundongos , Ciclo-Oxigenase 2 , Etoricoxib , Lipossomos/química , Macrófagos Associados a Tumor , Camundongos Endogâmicos BALB C
8.
Bioanalysis ; 14(14): 1005-1020, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36066029

RESUMO

Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxel (PTX) and baicalein (BAC). Materials & methods: The analytes were resolved in a C18 column using the aqueous solution of formic acid (0.10% v/v) and MeOH (30:70 v/v). Results: The developed method was found to be linear over the concentration ranges 0.039-10 µg/ml and 0.019-10 µg/ml for PTX and BAC, respectively. The lower limits of quantification obtained were 0.042 µg/ml and 0.361 µg/ml for PTX and BAC, respectively. Conclusion: The developed method was found to be precise and accurate as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, for simultaneous estimation of PTX and BAC, having an application in formulation development and bioanalytical studies.


Assuntos
Paclitaxel , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas , Humanos , Preparações Farmacêuticas , Reprodutibilidade dos Testes
9.
AAPS PharmSciTech ; 23(1): 10, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862568

RESUMO

Targeted delivery of therapeutics forestalls the dreadful delocalized effects, drug toxicities and needless immunosuppression. Cancer cells are bounteous with sialic acid and the differential expression of glycosyl transferase, glycosidase and monosaccharide transporter compared to healthy tissues. The current study entails the development and characterisation of sialic acid (SA)-labelled chitosan nanoparticles encapsulating gemcitabine (GEM). Chitosan (CS) was conjugated with SA using coupling reaction and characterised spectroscopically. Furthermore, different concentrations of chitosan and tripolyphosphate (TPP) were optimised to fabricate surface modified chitosan nanoparticles. SA conjugated chitosan nanoparticles encapsulating GEM (SA-CS_GEM NPs) of 232 ± 9.69 nm with narrow distribution (PDI < 0.5) and zeta potential of - 19 ± 0.97 mV was fabricated. GEM was successfully loaded in the SA-CS NPs, depicting prolonged and biphasic drug release pattern more elated at low pH. Pronounced cellular uptake (FITC tagged) and cytotoxicity (IC50 487.4 nM) was observed in SA-CS_GEM NPs against A549 cells. IC50 for SA-CS_GEM NPs plunged with an increase in the time points from 24 to 72 h. Concentration-dependent haemolytic study confirmed significant haemocompatibility of SA-CS_GEM NPs. Pharmacokinetic study was performed on Sprague-Dawley rats and the kinetic parameters were calculated using PKSolver 2.0. Results demonstrated a consequential refinement of 2.98 times in modified SA-CS_GEM NPs with a significant increase in retention time, bioavailability and elimination half-life, and decrease in elimination rate constant and volume of distribution in comparison to CS_GEM NPs. Therefore, SA-CS shell core nanoparticles could be a beneficial approach to target and treat NSCLC (non-small cell lung cancer) and direct for research possibilities to target the other tumour cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quitosana , Neoplasias Pulmonares , Nanopartículas , Animais , Portadores de Fármacos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Ácido N-Acetilneuramínico/uso terapêutico , Ratos , Ratos Sprague-Dawley
10.
AAPS PharmSciTech ; 20(3): 129, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30815765

RESUMO

The attempts to oral delivery of lipids can be challenging. Self-emulsifying drug delivery system (SEDDS) plays a vital role to tackle this problem. SEDDS is composed of an oil phase, surfactants, co-surfactants, emulsifying agents, and co-solvents. SEDDS can be categorized into self-nano-emulsifying agents (SNEDDS) and self-micro-emulsifying agents (SMEDDS). The characterization of SEDDS includes size, zeta potential analysis, and surface morphology via electron microscopy and phase separation methods. SEDDS can be well characterized through different techniques for size and morphology. Supersaturation is the phenomenon applied in case of SEDDS, in which polymers and copolymers are used for SEDDS preparation. A supersaturated SEDDS formulation kinetically and thermodynamically inhibits the precipitation of drug molecules by retarding nucleation and crystal growth in the aqueous medium. Self-emulsification approach has been successful in the delivery of anti-cancer agents, anti-viral drugs, anti-bacterial, immunosuppressant, and natural products such as antioxidants as well as alkaloids. At present, more than four SEDDS drug products are available in the market. SEDDS have tremendous capabilities which are yet to be explored which would be beneficial in oral lipid delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/administração & dosagem , Lipídeos/química , Administração Oral , Animais , Química Farmacêutica , Emulsificantes , Emulsões , Excipientes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...